WA 2917

11.23.92

TO:

Joe Depner, Hydrogeologist

FROM:

DATE:

Nels Cone, Chemist

November 23, 1992

SUBJECT:

DATA VALIDATION OF ANALYTICAL RESULTS FROM PIER 91 RCRA

FACILITY INVESTIGATION, PROJECT 624878, DATA SET #2

On September 18, 1992, soil samples were collected for semivolatile (EPA SW-846 Method 8270) and Total Petroleum Hydrocarbon (EPA SW-846 Methods 418.1 and 8015) analyses. On September 21, 1992, the samples were submitted to Sound Analytical Services (SAS) of Tacoma, Washington to perform the requested analyses on the following samples:

CP-HA-8-3-3.5, CP-HA-8-4.5-5, and CP-HA-10-1.5-2

Properly completed chain-of-custody (COC) forms were included, along with documented signatures from field to laboratory receipt. All samples were shown as having been properly iced and received in good condition. All holding times were clearly written and evaluated according to regulatory protocol (*National Functional Guidelines for Organic Data Review*, USEPA, 1990). Samples received the requested analyses, and laboratory extraction/analysis times met well within required guidelines.

Duplicate analyses were performed as required by the Quality Assurance Project Plan (QAPP), and relative percent difference (RPD) between individuals results were shown to be within quality control (QC) guidelines. Method blanks and matrix spike/matrix spike duplicates displayed surrogate recoveries well within required QC limits. Supporting documentation for this data set included raw data, instrument calibration/tuning data, and chromatographic/mass spectral data. Data consistency was demonstrated throughout.

Analytical results from this data set indicate elevated levels of hydrocarbon compounds in all samples tested. These samples required dilution to ensure that target analytes were within the instrument calibration range. As a result, elevated detection limits were reported, and sample surrogate recoveries were outside normal QC limits. Regardless, the data quality objectives as defined in Table F-2 of the QAPP are not compromised.

Proper data qualifier flags accompanied the analytical results as needed, and their use is consistent with USEPA guidelines. Accordingly, this data set can be considered valid for its intended use.

NC/rlk/b41:1889b.mem

SOUND ANALYTICAL SERVICES, INC. ECEIVED

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

OCT 3 2 1992

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-Biddington Environmental Inc. Technical Services

ANALYTICAL NARRATIVE

Client:

Burlington Environmental Date: October 22, 1992

Engineering

Project: 624878 Pier 91

Lab No.: 27253

Delivered by: SAS

Date Sampled: 09-18-92

Condition of Samples upon Receipt: Samples were received cold and in good condition. Chain-of-custody was in order.

SAMPLE EXTRACTION AND ANALYSIS

Samples 27253-1 through 27253-3 were analyzed for total petroleum fuel hydrocarbons in accordance with EPA SW-846 Modified Method 8015. The soil samples were extracted on 09-24-92 and analyzed on 09-29-92. Ten-fold dilutions were required prior to analysis due to the high concentration of petroleum hydrocarbons present in both samples. The concentration of petroleum hydrocarbons present in sample 27253-3 exceeded the instrument calibration range. The reconcentration sould be considered an estimated quantity. The reported surrogate recoveries could not be calculated for these samples due to the required dilutions. All other Quality Control was within acceptable limits.

Samples 27253-1 through 27253-3 were analyzed for total petroleum hydrocarbons in accordance with EPA Method 418.1. The soil samples were extracted and analyzed on 09-23-92. 1:50 dilutions were performed prior to analysis due to the high concentration of petroleum hydrocarbons present in the samples. All Quality Control was within acceptable limits.

Samples 27253-1 through 27253-3 were analyzed for semivolatile organics by GC/MS in accordance with EPA SW-846 Method 8270. soil samples were extracted on 09-23-92 and analyzed on 09-29-92. The quantitation limits for these samples were elevated due to the high concentrations of non-TCL analytes present in the samples. Batch QC was reported for this sample group. All Quality Control was within acceptable limits.

Results for soil samples were reported on a dry weight basis.

No blank correction was employed.

Data qualifier definitions are attached to the report.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental Date: October 6, 1992

Engineering

Report On: Analysis of Soil

Lab No.: 27253

Page 1 of 12

IDENTIFICATION:

Samples Received on 09-21-92 Project: 624878 Pier 91

ANALYSIS:

Lab No. 27253-1

Client ID: CP-HA-8-3-3.5

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 9-23-92 Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol	ND ND ND ND ND ND ND	7,100 7,100
87-68-3 59-50-7	Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND	7,100 14,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 2 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-1

Client ID: CP-HA-8-3-3.5

EPA Method 8270 Continued

LI'A MECHOO	0270 CONCINGED		
CAS No.	Compounds	Concentration ug/kg	PQL
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene	*(3,600) ND 14,000 ND	7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100 35,000 7,100
84-74-2	Di-n-butylphthalate	ND	7,100

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 3 of 12

Lab No. 27253 October 6, 1992

Lab No. 27253-1

Client ID: CP-HA-8-3-3.5

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND *(4,000) ND ND ND ND *(2,100) ND	7,100 7,100 7,100 14,000 7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8	35 - 114	23 - 120
	X8	43 - 116	30 - 115
	X8	33 - 141	18 - 137
	X8	10 - 94	24 - 113
	X8	21 - 100	25 - 121
	X8	10 - 123	19 - 122

Burlington Environmental, Engineering Project: 624878

Page 4 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-1 Client ID: CP-HA-8-3-3.5

TPH Per EPA Method 418.1 Date Extracted: 9-23-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg

21,000

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 9-29-92 Date Analyzed: 9-29-92

Total Petroleum

Fuel Hydrocarbons, mg/kg 21,000

TPH as Aged Gas, Diesel and Heavy Oil

SURROGATE RECOVERY, %

1-Chlorooctane X8 O-Terphenyl X8

Burlington Environmental, Engineering

Project: 624878 Page 5 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-2 Client ID: CP-HA-8-4.5-5

Semivolatile Organics Per EPA SW-846 Method 8270 Date Extracted: 9-23-92

Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2	Phenol	ND	6,900
111-44-4	bis(2-Chloroethyl) ether	ND	6,900
95-57-8	2-Chlorophenol	ND	6,900
541-73-1	1,3-Dichlorobenzene	ND	6,900
106-46-7	1,4-Dichlorobenzene	ND	6,900
100-51-6	Benzyl Alcohol	ND	14,000
95-50-1	1,2-Dichlorobenzene	ND	6,900
95-48-7	2-Methylphenol	ND	6,900
39638-32-9		ND	6,900
106-44-5	4-Methylphenol	ND	6,900
621-64-7	N-Nitroso-Di-N-propylamine	ND	6,900
67-72-1	Hexachloroethane	ND	6,900
98-95-3	Nitrobenzene	ND	6,900
78-59-1	Isophorone	ND	6,900
88-75-5	2-Nitrophenol	ND	6,900
105-67-9	2,4-Dimethylphenol	ND	6,900
65-85-0	Benzoic Acid	ND	35,000
111-91-1	bis(2-Chloroethoxy)methane	ND	6,900
120-83-2	2,4-Dichlorophenol	ND	6,900
120-82-1	1,2,4-Trichlorobenzene	ND	6,900
91-20-3	Naphthalene	*(5,900)	6,900
106-47-8	4-Chloroaniline	ND	14,000
87-68-3	Hexachlorobutadiene	ND	6,900
59-50-7	4-Chloro-3-methylphenol	ND	14,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 6 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

EPA Method 8270 Continued				
CAS No.	Compounds	Concentration ug/kg	PQL	
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene	22,000 ND	6,900 6,900 6,900 6,900 35,000 6,900 35,000 35,000 35,000 6,900 35,000 6,900 35,000 6,900 35,000 6,900 35,000 6,90	
84-74-2	Di-n-butylphthalate	ND	6,900	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 7 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

EPA Method 8270 Continued			
CAS No. Compounds	Concentration ug/kg	PQL	
Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene 117-81-7 bis(2-ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Benzo(g,h,i)perylene	*(3,000) *(3,000) *ND *ND *(3,800) *ND	6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8 X8 X8 X8 X8	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122

Burlington Environmental, Engineering Project: 624878
Page 8 of 12
Lab No. 27253
October 6, 1992

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

TPH Per EPA Method 418.1 Date Extracted: 9-23-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg

14,000

TPH Per EPA SW-846 Modified Method 8015
Date Extracted: 9-29-92
Date Analyzed: 9-29-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

18,000

TPH as Aged Gas, Diesel and Heavy Oil

SURROGATE RECOVERY, %

1-Chloroctane X8 O-Terphenyl X8

Burlington Environmental, Engineering

Project: 624878 Page 9 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-3

Client ID: CP-HA-8-3-3.5

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 9-23-92 Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol	ND ND ND ND ND ND ND ND	28,000 28,000
59-50-7	4-Chloro-3-methylphenol	ND	57,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 10 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-3

Client ID: CP-HA-8-3-3.5

EPA Method 8270 Continued			
CAS No.	Compounds	Concentration ug/kg	PQL
91-57-6 77-47-4	2-Methylnaphthalene Hexachlorocyclopentadiene	ND ND	28,000 28,000
88-06-2	2,4,6-Trichlorophenol	ND	28,000
95-95-4	2,4,5-Trichlorophenol	ND	28,000
91-58-7	2-Chloronaphthalene	ND	28,000
88-74-4	2-Nitroaniline	ND	140,000
131-11-3	Dimethyl phthalate	ND	28,000
208-96-8	Acenaphthylene	ND	28,000
606-20-2	2,6-Dinitrotoluene	ND	28,000
99-09-2	3-Nitroaniline	ND	140,000
83-32-9	Acenaphthene	ND	28,000
51-28-5	2,4-Dinitrophenol	ND	140,000
100-02-7	4-Nitrophenol	ND	140,000
132-64-9	Dibenzofuran	ND	28,000
121-14-2	2,4-Dinitrotoluene	ND	28,000
84-66-2	Diethylphthalate	ND	28,000
7005-72-3	4-Chlorophenyl phenyl ether		28,000
86-73-7	Fluorene	ND	28,000
100-01-6	4-Nitroaniline	ND	140,000
534-52-1	4,6-Dinitro-2-methylphenol	ND	140,000
86-30-6	N-Nitrosodiphenylamine	ND	28,000 28,000
101-55-3	4-Bromophenyl phenyl ether	ND ND	28,000
118-74-1	Hexachlorobenzene	ND	140,000
87-86-5	Pentachlorophenol	*(4,800)	28,000
85-01-8 120-12-7	Phenanthrene Anthracene	ND	28,000
84-74-2	Di-n-butylphthalate	ND	28,000
07-/7-2	DI II DUCYIPITCHATACE	NB	20,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 11 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-3

Client ID: CP-HA-8-3-3.5

EPA	Method	8270	Continued
		_	

CAS No.	Compounds	Concentration ug/kg	PQL
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND *(4,200) ND	28,000 28,000 28,000 57,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8	35 - 114	23 - 120
	X8	43 - 116	30 - 115
	X8	33 - 141	18 - 137
	X8	10 - 94	24 - 113
	X8	21 - 100	25 - 121
	X8	10 - 123	19 - 122

Burlington Environmental, Engineering Project: 624878 Page 12 of 12 Lab No. 27253 October 6, 1992

Lab No. 27253-3

Client ID: CP-HA-8-3-3.5

TPH Per EPA Method 418.1 Date Extracted: 9-23-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg

26,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 9-29-92

Date Analyzed: 9-29-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

51,000 E

TPH as Aged Gas, Diesel and Heavy Oil

SURROGATE RECOVERY, %

1-Chlorooctane O-Terphenyl X8

X8

SOUND ANALYTICAL SERVICES

DENNIS L. BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental Engineering

Lab No:

27253qc1

Matrix:

Soil

Units:

mg/kg

Date:

October 6, 1992

DUPLICATE

Dup No. 27253-1

Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Hydrocarbons	21,000	24,000	13.3

RPD = Relative Percent Difference = [(S - D) / ((S + D) / 2] x 100

METHOD BLANK

1	METHOD BLAN	
	Parameter	Blank Value
	Total Petroleum Hydrocarbons	< 10

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Burlington Environmental

Client: Burlingto Lab No: 27253qc2

Units: mg/kg

Date:

October 6, 1992

METHOD BLANK

Parameter	Blank Value
Total Petroleum Fuel Hydrocarbons	< 10
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	111 113

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 1 of 3

Client:

Burlington Environmental Engineering

Lab No:

27253qc3

Units:

ug/kg

Date:

October 6, 1992

Blank No: S6248

METHOD BLANK

	D BLANK	
Compound	Blank Value	PQL
Phenol	ND	330
bis(2-Chloroethyl) ether	ND	330
2-Chlorophenol	ND	330
1,3-Dichlorobenzene	ND	330
1,4-Dichlorobenzene	ND	330
Benzyl Alcohol	ND	670
1,2-Dichlorobenzene	ND	330
2-Methylphenol	ND	330
bis(2-Chloroisopropyl)ether	ND	330
4-Methylphenol	ND	330
N-Nitroso-Di-N-propylamine	ND	330
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone	ND	330
2-Nitrophenol	ND	330
2,4-Dimethylphenol	ND	330
Benzoic Acid	ND	1,700
bis(2-Chloroethoxy)methane	ND	330
2,4-Dichlorophenol	ND	330
1,2,4-Trichlorobenzene	ND	330
Naphthalene	ND	330
4-Chloroaniline	ND	670
Hexachlorobutadiene	ND	330
4-Chloro-3-methylphenol	ND	670
2-Methylnaphthalene	ND	330
Hexachlorocyclopentadiene	ND	330
2,4,6-Trichlorophenol	ND	330
2,4,5-Trichlorophenol	ND	330
2-Chloronaphthalene	ND	330
2-Nitroaniline	ND	1,700
Dimethyl phthalate	ND	330
Acenaphthylene	ND	330

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 2 of 3

Client: Burlington Environmental Engineering

Lab No: 27253qc3 Units: ug/kg

Date: October 6, 1992

Blank No: S6248

METHOD BLANK

D BLANK	
Blank Value	PQL
ND	1,700
ND	330
	1,700
ND	1,700
ND	330
ND	1,700
ND	1,700
ND	330
ND	330
ND	330
ND	1,700
ND	330
ND	330
580	330
ND	670
ND	330
	Blank Value ND

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 3 of 3

Client:

Burlington Environmental Engineering

Lab No: 27253qc3

Units: ug/kg

Date:

October 6, 1992

Blank No: S6248

ND = Not Detected.

PQL = Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

SEMIVOLATILE SURROGATES

Surrogate	Percent	Control	Limits
	Recovery	Water	Soil
Nitrobenzene - d5	82	35 - 114	23 - 120
2-Fluorobiphenyl	70	43 - 116	30 - 115
p-Terphenyl-d14	69	33 - 141	18 - 137
Phenol-d6	79	10 - 94	24 - 113
2-Fluorophenol	86	21 - 100	25 - 121
2,4,6-TBP	83	10 - 123	19 - 122

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

DATA QUALIFIER FLAGS

- ND: Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation limit, corrected for sample dilution.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- C: The identification of this analyte was confirmed by GC/MS.
- B: This analyte was also detected in the associated method blank. There is a possibility of blank contamination.
- E: The concentration of this analyte exceeded the instrument calibration range.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- A: This TIC is a suspected aldol-condensation product.
- M: Quantitation Limits are elevated due to matrix interferences.
- S: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an estimated quantity.
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous.
- X4a: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside QC limits due to matrix composition.
- X10: Surrogate recovery outside QC limits due to high contaminant levels.

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6064

SAMPLERS J	Pence		1011111111111	NEBS S	Z W) 	/ ,	/ /	//	//5	9	REI	MARKS	IEST
SAMPLE NO. DAT		ST ST	SAMPLE LOCATION	—— p. Ž	To the	12/	7/2/		//	$//\xi$	CHEMICAL S		FORM NUMBE	R IF APPLICA	BLE)
9-1		X	CP-HA-8-3-3 CP-HA-8-4.5 CP-HA-40-1.5	.5 1	XXX	¥ ;	¥			4					
DEL MOURCUED	By						FOENGE								
ω _γ	SIG	NATURE	Pl	9-21 9/2 (104 12:3	E	ECEIVE	SI	dm		GNATURE	ST	5	DATE 9/3/1	TIME [0:45] [230]
SHIPPING NOTE	:S						LAB NOT	ES							BE-34 (1/92)

RECEIVED

OCT 1 9 1992

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Burlington Environmental Inc. Technical Services

Report To: Burlington Environmental

Engineering

Date: October 6, 1992

Revised: October 14, 1992

Report On: Analysis of Soil

Lab No.: 27253 Page 1 of 12

IDENTIFICATION:

Samples Received on 09-21-92 Project: 624878 Pier 91

ANALYSIS:

Lab No. 27253-1

Client ID: CP-HA-8-3-3.5

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 9-23-92 Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline	ND ND ND ND ND ND ND ND ND ND ND ND ND N	7,100 7,100
87-68-3 59-50-7	Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND	7,100 14,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 2 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-1 Client ID: CP-HA-8-3-3.5

EPA Method 8270 Continued

EPA Method	8270 Continued		
CAS No.	Compounds	Concentration ug/kg	PQL
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene	29,000 ND ND ND ND ND ND ND ND ND ND	7,100 7,100 7,100 7,100 7,100 35,000 7,100 35,000 7,100 35,000 7,100
84-74-2	Di-n-butylphthalate	ND	7,100

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 3 of 12

Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-1

Client ID: CP-HA-8-3-3.5

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND *(4,000) ND ND ND ND ND *(2,100) ND	7,100 7,100 7,100 14,000 7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100 7,100

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8	35 - 114	23 - 120
	X8	43 - 116	30 - 115
	X8	33 - 141	18 - 137
	X8	10 - 94	24 - 113
	X8	21 - 100	25 - 121
	X8	10 - 123	19 - 122

Burlington Environmental, Engineering

Project: 624878 Page 4 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-1

Client ID: CP-HA-8-3-3.5

TPH Per EPA Method 418.1 Date Extracted: 9-23-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg 21,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 9-29-92

Date Analyzed: 9-29-92

Total Petroleum

Fuel Hydrocarbons, mg/kg 21,000

TPH as Aged Gas, Diesel and Heavy Oil

SURROGATE RECOVERY, %

X8 1-Chlorooctane O-Terphenyl X8

Burlington Environmental, Engineering

Project: 624878 Page 5 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

Semivolatile Organics Per EPA SW-846 Method 8270 Date Extracted: 9-23-92

Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine	ND ND ND ND ND ND ND ND ND ND ND	6,900 6,900 6,900 6,900 14,000 6,900 6,900 6,900 6,900
67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3 59-50-7	Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND ND ND ND ND ND *(5,900) ND ND ND	6,900 6,900 6,900 6,900 35,000 6,900 6,900 6,900 14,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 6 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

EPA Method 8270 Continued

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

Concentration

CAS No.	Compounds	ug/kg	PQL
91-57-6 77-47-4	2-Methylnaphthalene Hexachlorocyclopentadiene	22,000 ND	6,900 6,900
88-06-2	2,4,6-Trichlorophenol	ND	6,900
95-95-4	2,4,5-Trichlorophenol	ND	6,900
91-58-7	2-Chloronaphthalene	ND	6,900
88-74-4	2-Nitroaniline	ND	35,000
131-11-3	Dimethyl phthalate	ND	6,900
208-96-8	Acenaphthylene	ND	6,900
606-20-2	2,6-Dinitrotoluene	ND	6,900
99-09-2	3-Nitroaniline	ND	35,000
83-32-9	Acenaphthene	*(1,200)	6,900
51-28-5	2,4-Dinitrophenol	ND	35,000
100-02-7	4-Nitrophenol	ND	35,000
132-64-9	Dibenzofuran	ND	6,900
121-14-2	2,4-Dinitrotoluene	ND	6,900
84-66-2	Diethylphthalate	ND	6,900
7005-72-3	4-Chlorophenyl phenyl ether	ND	6,900
86-73-7	Fluorene	*(3,300)	6,900
100-01-6	4-Nitroaniline	ND	35,000
534-52-1	4,6-Dinitro-2-methylphenol	ND	35,000

N-Nitrosodiphenylamine

Hexachlorobenzene

Pentachlorophenol

Di-n-butylphthalate

Phenanthrene

Anthracene

4-Bromophenyl phenyl ether

ND - Not Detected

86-30-6

101-55-3

118-74-1

87-86-5

85-01-8

84-74-2

120-12-7

Continued

ND

ND

ND

ND

ND

ND

12,000

6,900

6,900

6,900

6,900

6,900

6,900

35,000

Burlington Environmental, Engineering

Project: 624878 Page 7 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

EPA Method 8270 Continued

DI II IIC CIIO C	OZ / O CONCINCO		
CAS No.	Compounds	Concentration ug/kg	PQL
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND *(3,000) ND ND ND ND *(3,800) ND	6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900 6,900
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I			

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits			
Compound	Recovery	Water	Soil			
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8 X8 X8 X8 X8	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122			

Burlington Environmental, Engineering

Project: 624878 Page 8 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-2

Client ID: CP-HA-8-4.5-5

TPH Per EPA Method 418.1 Date Extracted: 9-23-92 Date Analyzed: 9-23-92

Total Petroleum
Hydrocarbons, mg/kg

14,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 9-29-92

Date Analyzed: 9-29-92

Total Petroleum

Fuel Hydrocarbons, mg/kg 18,000

TPH as Aged Gas, Diesel and Heavy Oil

SURROGATE RECOVERY, %

1-Chlorooctane X8 O-Terphenyl X8

Burlington Environmental, Engineering

Project: 624878 Page 9 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-3

Client ID: CP-HA-10-1.5-2

Semivolatile Organics Per EPA SW-846 Method 8270 Date Extracted: 9-23-92 Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2	Phenol	ND ND	28,000 28,000
111-44-4 95-57-8	bis(2-Chloroethyl) ether 2-Chlorophenol	ND	28,000
541-73-1	1,3-Dichlorobenzene	ND	28,000
106-46-7	1,4-Dichlorobenzene	ND	28,000
100-51-6	Benzyl Alcohol	ND	57,000
95-50-1	1,2-Dichlorobenzene	ND	28,000
95-48-7	2-Methylphenol	ND	28,000
39638-32-9		ND	28,000
106-44-5	4-Methylphenol	ND	28,000
621-64-7	N-Nitroso-Di-N-propylamine	ND	28,000
67-72-1	Hexachloroethane	ND	28,000
98-95-3	Nitrobenzene	ND	28,000
78-59-1	Isophorone	ND	28,000
88-75-5	2-Nitrophenol	ND	28,000
105-67-9	2,4-Dimethylphenol	ND	28,000
65-85-0	Benzoic Acid	ND	140,000
111-91-1	bis(2-Chloroethoxy)methane	ND	28,000
120-83-2	2,4-Dichlorophenol	ND	28,000
120-82-1	1,2,4-Trichlorobenzene	ND	28,000
91-20-3	Naphthalene	*(9,500)	28,000
106-47-8	4-Chloroaniline	ND	57,000
87-68-3	Hexachlorobutadiene	ND	28,000
59-50-7	4-Chloro-3-methylphenol	ND	57,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 10 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-3

Client ID: CP-HA-10-1.5-2

77-47-4 Hexachlorocyclopentadiene ND 28,000 88-06-2 2,4,6-Trichlorophenol ND 28,000 95-95-4 2,4,5-Trichlorophenol ND 28,000 91-58-7 2-Chloronaphthalene ND 28,000 88-74-4 2-Nitroaniline ND 140,000 131-11-3 Dimethyl phthalate ND 28,000 208-96-8 Acenaphthylene ND 28,000 606-20-2 2,6-Dinitrotoluene ND 140,000 99-09-2 3-Nitroaniline ND 140,000 83-32-9 Acenaphthene ND 140,000 51-28-5 2,4-Dinitrophenol ND 140,000 100-02-7 4-Nitrophenol ND 140,000 132-64-9 Dibenzofuran ND 28,000 121-14-2 2,4-Dinitrotoluene ND 28,000 84-66-2 Diethylphthalate ND 28,000 86-73-7 Fluorene ND 140,000 100-01-6 4-Nitroaniline ND 140,000 534-52-1 4,6-Dinitro-2-methylphenol	EPA Method 8270 Continued										
77-47-4 Hexachlorocyclopentadiene ND 28,000 88-06-2 2,4,6-Trichlorophenol ND 28,000 95-95-4 2,4,5-Trichlorophenol ND 28,000 91-58-7 2-Chloronaphthalene ND 28,000 88-74-4 2-Nitroaniline ND 140,000 131-11-3 Dimethyl phthalate ND 28,000 208-96-8 Acenaphthylene ND 28,000 606-20-2 2,6-Dinitrotoluene ND 140,000 99-09-2 3-Nitroaniline ND 140,000 83-32-9 Acenaphthene ND 140,000 51-28-5 2,4-Dinitrophenol ND 140,000 100-02-7 4-Nitrophenol ND 140,000 132-64-9 Dibenzofuran ND 28,000 121-14-2 2,4-Dinitrotoluene ND 28,000 84-66-2 Diethylphthalate ND 28,000 86-73-7 Fluorene ND 140,000 100-01-6 4-Nitroaniline ND 140,000 534-52-1 4,6-Dinitro-2-methylphenol	CAS No.	Compounds		PQL							
85-01-8 Phenanthrene *(4,800) 28,000 120-12-7 Anthracene ND 28,000	77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7	Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorophenol Phenanthrene Anthracene	ND N	28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 140,000 140,000 140,000 28,000							

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 11 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-3.

Client ID: CP-HA-10-1.5-2

EPA	Met.	nod	.82	70	Con	TII	nuea
			1				

CAS No.	Compounds	Concentration ug/kg	PQL
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND *(4,200) *D *ND *ND *ND *ND *ND *ND *ND *ND *ND	28,000 28,000 28,000 57,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits			
Compound	Recovery	Water	Soil			
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8 X8 X8 X8 X8	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122			

Burlington Environmental, Engineering

Project: 624878 Page 12 of 12 Lab No. 27253 October 6, 1992

Revised: October 14, 1992

Lab No. 27253-3

Client ID: CP-HA-10-1.5-2

TPH Per EPA Method 418.1 Date Extracted: 9-23-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg

26,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 9-29-92

Date Analyzed: 9-29-92

Total Petroleum Fuel Hydrocarbons, mg/kg

51,000

TPH as

Aged Gas, Diesel and Heavy Oil

SURROGATE RECOVERY, %

1-Chlorooctane O-Terphenyl **X8**

X8

SOUND ANALYTICAL SERVICES

DENNIS L. BEAL

CHAIN OF CUSTODY

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6064

PROJECT PROJECT SAMPLER LAB DEST SAMPLE NO.	NUMBER S J.	PILIZ 60 Y D SOUN TIME	9/ 78 3D	Grage St	MAJOR TASK 703/ DALVITICAL SAMPLE LOCATION	NO. OF CONTAINERS	AND EOF	100 P	>/	/ # Z/	/ /s			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		PRESER-ATIVES	(CHEMICAL	REMARKS . ANALYSIS REQU MBER IF APPLICAR	JEST BLEJ
	9-18			Y	CP- HA-8-3-3.5	1	١	7	X					X		(-	
		1325		X	CP-HA-8-4.5-5		X	7	- 4					4					
	1	1115		K	CP-11A-10-15-2	1	×	7	7					4					
	i					-					٠.			_	,				
							-						_	_					
						-	-												
					,	1	-		<u> </u>					-	******	-		*	
						1													
					,												*	1 1	
					}														
		150.			:														
			-	_		-	-		-	_						-			
RELINQUI				<u> </u>	·			L	DE0/			Ι'					12		
HELINGUI	OUED BY	SIG	NATU	RE		DATE	TII		HEC	EIVED	BA			SIGN	NATURE		i	DATE	TIME
	A	0	- -			7 21				10	F	1	1	<u> </u>	A-		11	7/8/	
TE	100	1	7		Me l	1	10		<	12		W.KW	Yu		7			1/01	16:451
70	Dan	Di	≤ 1		0 1/	2	12:	30 6		X	21	10	1)	1		57	2	12/92	123001
	1				70	\leq								,		045 345			1
	t/ 040	·			20	P										2	Sec. 1		
SHIPPING	NOTES				\1_		-		LAE	NOTI	ES							* 1	
						,										:			
									1										167